Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[[dibromidomanganese(II)]-μ-2,2'-bipyrimidine- $\left.\kappa^{4} N^{1}, N^{1}: N^{3}, N^{3^{\prime}}\right]$ dihydrate]

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
Correspondence e-mail: hakwang@chonnam.ac.kr

Received 9 November 2011; accepted 21 November 2011
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.033 ; w R$ factor $=0.097$; data-to-parameter ratio $=19.5$.

The asymmetric unit of the title compound, $\left\{\left[\mathrm{MnBr}_{2}-\right.\right.$ $\left.\left.\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, contains one half of a repeat unit of the neutral linear coordination polymer and a solvent water molecule, with the $\mathrm{Mn}^{\mathrm{II}}$ ion on a crystallographic twofold axis. In the polymer, inversion-related $\mathrm{Mn}^{\mathrm{II}}$ ions are bridged by the bis-chelating $2,2^{\prime}$-bipyrimidine (bpym) ligands, thereby forming a chain structure along the c-axis direction, and are six-coordinated in a distorted cis- $\mathrm{N}_{4} \mathrm{Br}_{2}$ octahedral environment by four N atoms of twofold-related bpym ligands and twofold-related bromide anions. In the crystal, the complex polymers and solvent water molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a two-dimensional layered structure extending parallel to the ac plane.

Related literature

For the crystal structure of the chlorido $\mathrm{Mn}^{\mathrm{II}}$ complex polymer $\left[\mathrm{MnCl}_{2} \text { (bpym) }\right]_{n} \cdot 2 n \mathrm{H}_{2} \mathrm{O}$, which is isotypic to the title compound, see: Armentano et al. (2003).

2n $\mathrm{H}_{2} \mathrm{O}$

Experimental

Crystal data

$$
\left[\mathrm{MnBr}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad M_{r}=408.96
$$

Monoclinic, C2/c
$a=17.950$ (9) A
$b=8.263$ (4) \AA
$c=10.188$ (5) \AA
$\beta=123.888$ (8) ${ }^{\circ}$
$V=1254.4$ (10) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=7.42 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.30 \times 0.17 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.668, T_{\text {max }}=1.000$
4360 measured reflections
1524 independent reflections 1207 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad 78$ parameters
$w R\left(F^{2}\right)=0.097$
H -atom parameters constrained
$S=1.14$
1524 reflections
$\Delta \rho_{\max }=0.92 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.76 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{N} 1$	$2.300(3)$	$\mathrm{Mn} 1-\mathrm{Br} 1$	$2.6094(10)$
$\mathrm{Mn} 1-\mathrm{N} 2$	$2.322(3)$		
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$71.21(11)$	$\mathrm{Br}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Br} 1$	$97.93(5)$

Symmetry code: (i) $-x, y,-z+\frac{3}{2}$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{iii}}$	0.84	2.57	$3.356(3)$	156
$\mathrm{O}_{1}-\mathrm{H} 1 B \cdots \mathrm{Br}^{\mathrm{iii}}$	0.84	2.61	$3.394(4)$	157
$\mathrm{C}^{\text {1 }}-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}$	0.95	2.45	$3.364(5)$	161
Symmetry codes:	(ii)	$-x, y,-z+\frac{1}{2} ;$	(iii)	$-x,-y+1,-z+1 ;$
$-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.				
(iv)				

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This study was supported financially by Chonnam National University, 2010.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2362).

References

Armentano, D., de Munno, G., Guerra, F., Faus, J., Lloret, F. \& Julve, M. (2003). Dalton Trans. pp. 4626-4634.

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, m1848 [doi:10.1107/S1600536811049919]
catena-Poly[[[dibromidomanganese(II)]- $\mu_{-2,2 '-b i p y r i m i d i n e-~} \kappa^{4} N^{1}, N^{1}: N^{3}, N^{3}{ }^{\prime}$]dihydrate]

K. На

Comment

The title compound, $\left[\mathrm{MnBr}_{2} \text { (bpym) }\right]_{n} \cdot 2 \mathrm{nH}_{2} \mathrm{O}$ (bpym $=2,2^{\prime}$-bipyrimidine, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}$), consists of a neutral complex polymer and solvent water molecules. The compound is isomorphous with the chloro analogue $\left[\mathrm{MnCl}_{2} \text { (bpym) }\right]_{\mathrm{n}} \cdot 2 \mathrm{nH}_{2} \mathrm{O}$ (Armentano et al., 2003).

The asymmetric unit contains one half of a repeat unit of the polymer and a water molecule (Fig. 1). In the polymer, the symmetry related $\mathrm{Mn}^{\mathrm{II}}$ ions are bridged by the bis(chelating) bpym ligands, thereby forming a chain structure along the c axis, and are six-coordinated in a distorted cis- $\mathrm{N}_{4} \mathrm{Br}_{2}$ octahedral environment by four N atoms of the two different bpym ligands and two bromide anions. The Br atoms are cis with respect to each other. The main contributions to the distortion are the tight $\mathrm{N}-\mathrm{Mn}-\mathrm{N}$ chelate angle and the $\mathrm{Br}-\mathrm{Br}$ repelling $\left(<\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2=71.21(11)^{\circ}\right.$ and $<\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 1^{a}$ $=97.93(5)^{\circ}$; symmetry code $\left.\mathrm{a}:-x, y, 3 / 2-z\right)$, which result in non-linear trans axes $\left(<\mathrm{N} 1 — \mathrm{Mn} 1-\mathrm{N} 1^{a}=153.49(16)^{\circ}\right.$ and $\left.<\mathrm{N} 2 — \mathrm{Mn} 1 — \mathrm{Br}^{a}=165.13(7)^{\circ}\right)$. The $\mathrm{Mn}-\mathrm{N}$ bond lengths are almost equivalent (Table 1). In the crystal structure, the complex polymers and solvent water molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a two-dimensional layer structure extending parallel to $a c$ plane (Fig. 2, Table 2). The chains are stacked along the b axis. The shortest ring centroid-centroid distance is 5.337 (3) \AA.

Experimental

To a solution of $\mathrm{MnBr}_{2} .4 \mathrm{H}_{2} \mathrm{O}(0.2867 \mathrm{~g}, 1.000 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{ml})$ was added 2,2'-bipyrimidine $(0.1584 \mathrm{~g}, 1.002 \mathrm{mmol})$ and stirred for 3 h at room temperature. The precipitate was separated by filtration, washed with EtOH and dried at 50 ${ }^{\circ} \mathrm{C}$, to give a yellow powder (0.3441 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol solution.

Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms $[\mathrm{C}-\mathrm{H}=0.95$ \AA and $\left.U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$. The H atoms of the solvent water molecule were located in a difference Fourier map then allowed to ride on their parent O atom in the final cycles of refinement with $\mathrm{O}-\mathrm{H}=0.84 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The highest peak $\left(0.92 \mathrm{e} \AA^{-3}\right)$ and the deepest hole $\left(-0.75 \mathrm{e} \AA^{-3}\right)$ in the difference Fourier map are located $1.26 \AA$ and $0.96 \AA$ from the atoms H 1 B and Br 1 , respectively.

supplementary materials

Figures

Fig. 1. A fragment structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms [symmetry codes: $(a)-x, y, 3 / 2-z,(b)-x,-y, 1-z,(c)$ $x,-y,-1 / 2+z]$.

Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

catena-Poly[[[dibromidomanganese(II)]- μ-2,2'-bipyrimidine- $\left.\kappa^{4} N^{1}, N^{1 '}: N^{3}, N^{3}{ }^{\prime}\right]$ dihydrate]

Crystal data

$\left[\mathrm{MnBr}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$F(000)=788$
$M_{r}=408.96$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=17.950$ (9) \AA
$b=8.263$ (4) \AA
$c=10.188(5) \AA$
$\beta=123.888(8)^{\circ}$
$V=1254.4(10) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=2.165 \mathrm{Mg} \mathrm{m}^{-3}$
$\theta=2.4-28.3^{\circ}$
$\mu=7.42 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Stick, yellow

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2416 reflections
$0.30 \times 0.17 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.668, T_{\text {max }}=1.000$
4360 measured reflections
1524 independent reflections
1207 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.043$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-23 \rightarrow 23$
$k=-11 \rightarrow 8$
$l=-13 \rightarrow 12$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

$w R\left(F^{2}\right)=0.097$	H-atom parameters constrained
$S=1.14$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0395 P)^{2}\right]$
	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
1524 reflections	$(\Delta / \sigma)_{\max }<0.001$
78 parameters	$\Delta \rho_{\max }=0.92 \mathrm{e} \AA^{-3}$
0 restraints	$\Delta \rho_{\min }=-0.76 \mathrm{e} \AA^{-3}$

$w R\left(F^{2}\right)=0.097$
$S=1.14$

1524 reflections

0 restraints

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0395 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.92 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.76$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Mn1	0.0000	$0.20755(10)$	0.7500	$0.0207(2)$
Br1	$-0.11908(3)$	$0.41487(5)$	$0.54940(5)$	$0.03063(17)$
N1	$0.07975(19)$	$0.1437(4)$	$0.6421(3)$	$0.0197(6)$
N2	$-0.07926(19)$	$0.0143(4)$	$0.5541(3)$	$0.0200(6)$
C1	$0.1597(2)$	$0.2064(5)$	$0.6848(4)$	$0.0243(8)$
H1	0.1869	0.2857	0.7660	0.029^{*}
C2	$0.2028(2)$	$0.1594(5)$	$0.6146(4)$	$0.0272(9)$
H2	0.2598	0.2025	0.6478	0.033^{*}
C3	$-0.1606(2)$	$-0.0473(5)$	$0.5058(5)$	$0.0254(8)$
H3	-0.1892	-0.0125	0.5561	0.030^{*}
C4	$0.0437(2)$	$0.0356(4)$	$0.5240(4)$	$0.0177(7)$
O1	$0.0770(2)$	$0.2654(4)$	$0.2093(4)$	$0.0470(8)$
H1A	0.0833	0.3297	0.1523	0.070^{*}
H1B	0.0717	0.3369	0.2623	0.070^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.0210(4)$	$0.0249(5)$	$0.0165(4)$	0.000	$0.0106(3)$	0.000
Br 1	$0.0324(3)$	$0.0312(3)$	$0.0244(3)$	$0.00758(15)$	$0.0134(2)$	$0.00491(15)$
N 1	$0.0224(15)$	$0.0209(17)$	$0.0148(15)$	$-0.0028(12)$	$0.0097(13)$	$-0.0009(12)$
N 2	$0.0187(14)$	$0.0245(18)$	$0.0166(15)$	$-0.0033(12)$	$0.0097(13)$	$-0.0003(12)$
C 1	$0.0251(19)$	$0.027(2)$	$0.0189(19)$	$-0.0074(15)$	$0.0110(16)$	$-0.0016(14)$
C 2	$0.0195(18)$	$0.039(3)$	$0.025(2)$	$-0.0068(16)$	$0.0131(17)$	$-0.0006(17)$
C 3	$0.0231(19)$	$0.032(2)$	$0.022(2)$	$-0.0018(16)$	$0.0130(17)$	$0.0006(16)$

C4	$0.0180(17)$	$0.0193(19)$	$0.0172(17)$	$0.0038(13)$	$0.0107(15)$	$0.0028(13)$
O1	$0.058(2)$	$0.045(2)$	$0.041(2)$	$-0.0146(16)$	$0.0301(18)$	$-0.0070(15)$

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)

Mn1-N1	2.300 (3)
$\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	2.300 (3)
Mn1-N2	2.322 (3)
$\mathrm{Mn} 1-\mathrm{N} 2^{\text {i }}$	2.322 (3)
$\mathrm{Mn} 1-\mathrm{Br}^{1}$	2.6094 (10)
$\mathrm{Mn} 1-\mathrm{Br} 1$	2.6094 (10)
N1-C4	1.340 (5)
N1-C1	1.349 (4)
N2-C4 ${ }^{\text {ii }}$	1.333 (4)
N2-C3	1.353 (5)
N1-Mn1-N1 ${ }^{\text {i }}$	153.49 (16)
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	71.21 (11)
$\mathrm{N} 1{ }^{\mathrm{i}}$-Mn1-N2	90.38 (11)
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2{ }^{\text {i }}$	90.38 (11)
$\mathrm{N} 1^{\mathrm{i}}$ - $\mathrm{Mn} 1-\mathrm{N} 2^{\text {i }}$	71.21 (11)
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 2{ }^{\text {i }}$	93.08 (16)
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Brl}^{1}$	93.93 (8)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Br} 1^{\text {i }}$	103.45 (8)
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{Brl}^{1}$	165.13 (7)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Mnl}-\mathrm{Br} 1^{\text {i }}$	86.37 (8)
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Br} 1$	103.45 (8)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Br} 1$	93.93 (8)
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{Br} 1$	86.37 (8)
$\mathrm{N} 2{ }^{\mathrm{i}}$-Mn1-Br1	165.13 (7)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Br} 1$	97.93 (5)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	116.1 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Mn} 1$	117.7 (2)
N1 ${ }^{\text {i }}$-Mn1-N1-C4	49.5 (3)
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 4$	1.3 (3)
$\mathrm{N} 2{ }^{\mathrm{i}}$-Mn1—N1-C4	94.4 (3)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 4$	-179.2 (3)
$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 4$	-80.1 (3)
N1 ${ }^{\text {i }}$-Mn1-N1-C1	-131.5 (3)
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	-179.7 (3)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	-86.5 (3)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	-0.2 (3)
$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{Cl}$	99.0 (3)

C1-C2	1.371 (5)
C1-H1	0.9500
$\mathrm{C} 2-\mathrm{C} 3{ }^{\text {ii }}$	1.379 (5)
C2-H2	0.9500
C3-C2 ${ }^{\text {ii }}$	1.379 (5)
C3-H3	0.9500
$\mathrm{C} 4-\mathrm{N} 2^{\text {ii }}$	1.333 (4)
$\mathrm{C} 4-\mathrm{C} 4{ }^{\text {ii }}$	1.481 (7)
O1-H1A	0.8400
O1-H1B	0.8400
C1-N1-Mn1	126.2 (2)
$\mathrm{C} 4{ }^{\text {ii }}-\mathrm{N} 2-\mathrm{C} 3$	116.4 (3)
$\mathrm{C} 4{ }^{\mathrm{ii}}-\mathrm{N} 2-\mathrm{Mn} 1$	117.3 (2)
C3-N2-Mn1	126.2 (2)
N1-C1-C2	122.1 (4)
N1-C1-H1	119.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {ii }}$	117.7 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.2
C3 ${ }^{\text {ii }}-\mathrm{C} 2-\mathrm{H} 2$	121.2
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {ii }}$	121.5 (3)
N2-C3-H3	119.2
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{C} 3-\mathrm{H} 3$	119.2
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{C} 4-\mathrm{N} 1$	126.2 (3)
$\mathrm{N} 2 \mathrm{ii}^{\mathrm{ii}} \mathrm{C} 4-\mathrm{C} 4{ }^{\text {ii }}$	116.9 (4)
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 4{ }^{\text {ii }}$	116.9 (4)
H1A-O1-H1B	96.1
N1-Mn1-N2-C3	-177.7 (3)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 3$	21.8 (3)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 3$	93.0 (3)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 3$	-179.6 (2)
$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 3$	-72.1 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-1.7 (6)
$\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	179.2 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3^{\mathrm{ii}}$	1.7 (6)
$\mathrm{C} 4^{\mathrm{ii}}-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2^{\mathrm{ii}}$	1.9 (5)
$\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {ii }}$	178.5 (3)

supplementary materials

$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 4^{\mathrm{ii}}$	$-1.1(2)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 4^{\mathrm{ii}}$	$-161.7(3)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 4^{\mathrm{ii}}$	$-90.5(3)$
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 4^{\mathrm{ii}}$	$-3.0(5)$
$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{N} 2-\mathrm{C} 4^{\mathrm{ii}}$	$104.4(3)$

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2^{\mathrm{ii}}$	$-0.2(6)$
$\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2^{\mathrm{ii}}$	$179.0(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 4^{\mathrm{ii}}$	$179.5(4)$
$\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 4^{\mathrm{ii}}$	$-1.3(5)$

Symmetry codes: (i) $-x, y,-z+3 / 2$; (ii) $-x,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br}^{\mathrm{iii}}$	0.84	2.57	$3.356(3)$	156.
$\mathrm{O} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Br}^{\mathrm{iv}}$	0.84	2.61	$3.394(4)$	157.
$\mathrm{C} 2 — \mathrm{H} 2 \cdots 1^{\mathrm{V}}$	0.95	2.45	$3.364(5)$	161.

Symmetry codes: (iii) $-x, y,-z+1 / 2$; (iv) $-x,-y+1,-z+1$; (v) $-x+1 / 2,-y+1 / 2,-z+1$.

supplementary materials

Fig. 1

Fig. 2

